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Accurate and spatially representative measurements of ecosystem carbon fluxes
are essential for assessing agricultural carbon budgets and evaluating land-
atmosphere exchange processes. Conventional eddy covariance (EC) towers
provide long-term, high-frequency flux measurements, but their high cost and
spatial footprint constrain their capacity to detect within-field heterogeneity.
Emerging low-cost, distributed sensors offer the potential to complement EC
systems by capturing finer spatial gradients in carbon, water, and energy
exchange.

This study assesses the performance and comparability of a network of LI-COR
carbon node (LI-720). water nodes (LI-710) sensors deployed at a soybean-corn
rotation site in Mead, Nebraska. Four measurement positions were established,
including a central reference site co-located with a traditional EC tower and three
satellite points distributed across the field. Each position was equipped with a
carbon node (LI-720). measuring CO: flux, H:O flux, sensible heat, and wind
vectors, alongside paired water nodes (LI-710) that record evapotranspiration and
atmospheric conditions. To support cross-instrument evaluation, carbon and
water nodes from Positions 1-3 are rotated to Position 4 at fortnightly intervals,
while each location retains its original loE module for uninterrupted cloud-based
data continuity. Data was collected for a single growing season (May-November)
until harvest.

This distributed design enables evaluation of (i) agreement between node-based
fluxes and the EC reference system, (ii) inter-node consistency across space, and
tiii) the influence of landscape variability on flux interpretation. Ancillary
datasets, including soil moisture, vegetation phenology. crop yield history, and
remote-sensing products, are integrated to contextualise spatial patterns in
carbon exchange and to explore how microtopography and land-use
heterogeneity affect flux behaviour.

By benchmarking emerging sensors against established EC measurements, this
work aims to determine the feasibility of low-cost, scalable sensor networks for
carbon-budget monitoring in agricultural systems. The results will inform best-
practice guidelines for distributed flux observations and support the
development of high-resolution, field-scale carbon monitoring strategies.

Carbon Nodes vs Eddy Covariance Tower: CO2 FLUX
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Figure 1: Aerial view of the study field showing the spatial arrangement of carbon nodes (triangles), water nodes (circles). and eddy covariance (EC)
towers across four LENS positions. Sensors were deployed to capture fine-scale spatial variability in CO: fluxes and evapotranspiration within the EC
tower footprint.

Water Nodes vs Carbon Nodes : Evapotranspiration
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Internode comparison and agreement

Direct comparisons between carbon nodes show strong internal
consistency. Pairwise regressions between neighbouring nodes exhibit
near 1:1 scaling, low bias, and high coefficients of determination, indicating
that observed spatial variability reflects real ecosystem heterogeneity
rather than sensor artefacts.
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Figure 4: Pairwise comparison of CO: fluxes between representation of field-scale
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Summary

 Distributed carbon and water nodes show strong agreement with
established EC measurements after quality control.

* Internal consistency across nodes indicates that observed variability
reflects real spatial heterogeneity.

* ET comparisons demonstrate that timing alignment and QC are critical for
cross-sensor integration.

« Combined, these results support the use of low-cost, distributed sensor

networks to complement EC towers and capture field-scale variability in
carbon and water fluxes.
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* Flat-line detection applied to remove periods of sensor stagnation.

Geospatial analysis (GWR)

Each node’s 30-min CO: flux was paired with footprint-weighted landscape variables:

* NDVI - vegetation ‘greenness’ (Daily)

* TWI - topographic wetness index calculated from a high resolution digital elevation model (Fixed in time)

* Yield - crop productivity (Annual)

A spatially varying Geographically and Temporal Weighted Regression (GTWR) was used to quantify how these
landscape features influence CO: flux differently across the field and through time. Node-specific coefficients were then
interpolated to continuous maps and overlaid on high-resolution imagery to visualise spatial controls on carbon

exchange.

Key findings:
TWI (soil wetness) was the dominant spatial predictor of

CO: flux across the growing season (May - October)
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Large negative coefficients in wetter depressions =
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suppressed respiration / lower CO: efflux.

Positive coefficients on higher, drier ground = enhanced
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respiration / higher CO: efflux.

GWR coefficient for TWI_fp
(umol CO2 m2s™ per TWI_fp unit (dimensionless))
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NDVIL_fp and Yield_fp showed much weaker spatial

effect. Implications for the carbon-node network
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Carbon nodes successfully captured real spatial

heterogeneity in CO: flux driven by microtopography

and soil moisture.
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The footprint-weighted GTWR approach allows nodes to

. Figure 5: Spatial patterns in CO: flux drivers derived using footprint-weighted
act as localised flux samplers, geographically (and temporally) weighted regression. Maps show node-specific
coefficients interpolated across the field, highlighting microtopographic wetness as a
dominant control on CO: exchange relative to other dependent variables.
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